Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(3, 3^{\prime}-Diamino-2, 2^{\prime}-bipyridine- $\kappa^{2} N, N^{\prime}$)-bis(thiocyanato- κN)copper(II)

Shi-Guo Zhang, ${ }^{\text {a }}$ Ju-Na Chen ${ }^{\text {b }}$ and Jing-Min Shi ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
Correspondence e-mail: shijingmin@beelink.com

Received 12 June 2007; accepted 13 June 2007

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.033 ; w R$ factor $=0.088$; data-to-parameter ratio $=15.1$.

The title mononuclear complex, $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right]$, is located on a twofold rotation axis. The $\mathrm{Cu}^{\mathrm{II}}$ ion assumes a tetrahedrally distorted square-planar coordination geometry. Two thiocyanate (NCS) anions and two N atoms from pyridine (py) rings coordinate in a cis manner to the $\mathrm{Cu}^{\mathrm{II}}$ ion with a dihedral angle of 26.29 (16) \AA between the $\mathrm{Cu} / \mathrm{N}_{\mathrm{py}} / \mathrm{N}_{\mathrm{py}}$ and $\mathrm{Cu} / \mathrm{N}_{\mathrm{NCS}} / \mathrm{N}_{\mathrm{NCS}}$ planes. There is a $\pi-\pi$ stacking interaction between neighbouring pyridine rings [with a centroidcentroid distance of 3.7302 (14) \AA and an interplanar distance of $3.311 \AA$] and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For the crystal structures of related complexes, see: Rice et al. (2002); Shi et al. (2006a,b).

Experimental

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right]$	$b=14.991(3) \AA$
$M_{r}=365.92$	$c=10.627(2) \AA$
Monoclinic, $C 2 / c$	$\beta=90.738(3)^{\circ}$
$a=8.8127(18) \AA$	$V=1403.8(5) \AA^{3}$

$Z=4$

Mo $K \alpha$ radiation
$\mu=1.85 \mathrm{~mm}^{-1}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.539, T_{\text {max }}=0.606$ $($ expected range $=0.510-0.573)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.088$
$S=1.05$
1450 reflections
$T=298$ (2) K
$0.38 \times 0.36 \times 0.30 \mathrm{~mm}$

3905 measured reflections 1450 independent reflections 1285 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.947(2)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.9728(19)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$92.80(13)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$95.61(9)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$161.13(9)$	$\mathrm{N} 1^{i}-\mathrm{Cu} 1-\mathrm{N} 1$	$81.60(11)$

Symmetry code: (i) $-x, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.69	$3.550(2)$	174
N3-H3B N^{i}	0.86	2.23	$2.775(4)$	121
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$	0.93	2.58	$3.044(4)$	112

Symmetry codes: (i) $-x, y,-z+\frac{3}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+2$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. Y2005B25).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2392).

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.A06). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
Rice, C. R., Onions, S., Vidal, N., Wallis, J. D., Senna, M. C., Pilkington, M. \& Stoeckli-Evans, H. (2002). Eur. J. Inorg. Chem. pp. 1985-1997.
Sheldrick, G. M. (1996). SADABS (Version 2.10). University of Göttingen, Germany.
Shi, J.-M., Chen, J.-N. \& Liu, L.-D. (2006a). Acta Cryst. E62, m2151-m2152.
Shi, J.-M., Chen, J.-N. \& Liu, L.-D. (2006b). Acta Cryst. E62, m2094-m2095.

supplementary materials

(3,3'-Diamino-2,2'-bipyridine- $\kappa^{2} N, N^{\prime}$)bis(thiocyanato- κN)copper(II)

S.-G. Zhang, J.-N. Chen and J.-M. Shi

Comment

As a derivative of 2,2'-bipyridine 3,3'-diamino-2,'2-bipyridine may function as a useful chelating multi-dentate ligand, and a few complexes dealing with this ligand have been published (Rice et al., 2002; Shi et al., 2006a; Shi et al., 2006b), in which there are two mono-nuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes. Here we report another $\mathrm{Cu}^{\mathrm{II}}$ mono-nuclear complex (Fig. 1).

Fig. 1 shows the asymmetric unit with the $\mathrm{Cu}^{\mathrm{II}}$ atom in a four-coordinate geometry. The $\mathrm{Cu} / \mathrm{N} 1 / \mathrm{N} 1^{i}$ plane is tilted with respect to the $\mathrm{CuN} 2 \mathrm{~N} 2^{\mathrm{i}}$ plane by a dihedral angle of $26.29(16)^{\circ}$. The bond angles at the Cu atom (Table 1) also show the extent of the distortion of the coordinated geometry from square planar. In the uncoordinated 3,3'-diamino-2,'2-bipyridine all non-hydrogen atoms are located in a plane and two amino groups are in trans-configuration, whereas in the title compound the dihedral angle between the two pyridine ring planes is $22.15(7)^{\circ}$. There is a $\pi-\pi$ stacking interaction between adjacent pyridine rings, with a centroid" centroid distance of $3.7302(14) \AA$ and an interplanar distance of $3.311 \AA$ [symmetry code: $1 / 2-X, 1 / 2-\mathrm{Y}, 2-Z]$. In addition, there are intra- and intermolecular hydrogen bonds.

Experimental

$\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0637 \mathrm{~g}, 0.172 \mathrm{mmol})$ and $\mathrm{NaSCN}(0.0139 \mathrm{~g}, 0.172 \mathrm{mmol})$ were dissoved in $5 \mathrm{ml}_{2} \mathrm{O}$, respectively, and stirred for a few minutes. The solution was poured into 5 ml acetonitrile solution containing 3,3'-diamino-2,2'-bipyridine $(0.0160 \mathrm{~g}, 0.0860 \mathrm{mmol})$, and the mixed solution was stirred for a few minutes. The green single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks. The IR peaks at $1640 \mathrm{~cm}^{-1}, 1566 \mathrm{~cm}^{-1}$, $1465 \mathrm{~cm}^{-1}$ and $1383 \mathrm{~cm}^{-1}$ may be attributed to the stretching vibrations of the $\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$ and NH_{2} groups, whereas strong and sharp peak at $2090 \mathrm{~cm}^{-1}$ obviously is from the stretching vibration of thiocyanate group.

Refinement

All H atoms were placed in calculated positions, and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA, U_{\text {iso }}(\mathrm{H})=1.2$ eq (C) for pyridine ring; $\mathrm{N}-\mathrm{H}=0.86 \AA, U_{\text {iso }}(\mathrm{H})=1.2(\mathrm{~N})$ for amino group.

supplementary materials

Figures

Fig. 1. Complex structure of (I) showing the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) $-x, y,-z+3 / 2$].

Fig. 2. Packing diagram with hydrogen bonds shown as dashed lines.

(3,3'-Diamino-2,2'-bipyridine- $\kappa^{2} N, N^{\prime}$)bis(thiocyanato-к N)copper(II)

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4}\right)\right.$]
$M_{r}=365.92$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=8.8127$ (18) \AA
$b=14.991$ (3) \AA
$c=10.627(2) \AA$
$\beta=90.738(3)^{\circ}$
$V=1403.8(5) \AA^{3}$
$Z=4$
$F_{000}=740$
$D_{\mathrm{x}}=1.731 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1907 reflections
$\theta=2.7-27.3^{\circ}$
$\mu=1.85 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, green
$0.38 \times 0.36 \times 0.30 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.539, T_{\text {max }}=0.606$
3905 measured reflections

1450 independent reflections
1285 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.5^{\circ}$
$\theta_{\text {min }}=2.7^{\circ}$
$h=-11 \rightarrow 8$
$k=-17 \rightarrow 18$
$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.088$
$S=1.05$
1450 reflections
96 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0466 P)^{2}+1.0653 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Cu1	0.0000	$0.39730(3)$	0.7500	$0.04805(18)$
S1	$0.21601(8)$	$0.62017(5)$	$1.00428(7)$	$0.0497(2)$
N1	$0.1402(2)$	$0.29769(13)$	$0.78613(17)$	$0.0366(4)$
C2	$0.3693(3)$	$0.2373(2)$	$0.8676(2)$	$0.0464(6)$
H2	0.4711	0.2450	0.8893	0.056^{*}
N2	$0.1172(3)$	$0.48687(15)$	$0.8415(2)$	$0.0509(5)$
C6	$0.1577(3)$	$0.54235(16)$	$0.9084(2)$	$0.0381(5)$
N3	$0.0829(3)$	$0.06250(16)$	$0.8619(3)$	$0.0636(7)$
H3A	0.1330	0.0207	0.8992	0.076^{*}
H3B	-0.0101	0.0539	0.8395	0.076^{*}
C5	$0.0762(2)$	$0.21557(15)$	$0.78060(19)$	$0.0339(5)$
C1	$0.2826(3)$	$0.30898(18)$	$0.8271(2)$	$0.0443(6)$
H1	0.3243	0.3660	0.8284	0.053^{*}
C4	$0.1515(3)$	$0.14310(16)$	$0.8380(2)$	$0.0418(5)$
C3	$0.3032(3)$	$0.15565(18)$	$0.8753(2)$	$0.0462(6)$
H3	0.3593	0.1075	0.9056	0.055^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0534(3)$	$0.0320(2)$	$0.0580(3)$	0.000	$-0.0273(2)$	0.000
S1	$0.0562(4)$	$0.0435(4)$	$0.0492(4)$	$-0.0030(3)$	$-0.0126(3)$	$-0.0086(3)$
N 1	$0.0383(10)$	$0.0386(10)$	$0.0328(9)$	$0.0013(8)$	$-0.0093(8)$	$0.0003(8)$
C2	$0.0357(13)$	$0.0640(18)$	$0.0394(14)$	$0.0077(11)$	$-0.0046(10)$	$-0.0025(12)$
N2	$0.0589(13)$	$0.0373(11)$	$0.0560(13)$	$-0.0041(10)$	$-0.0179(10)$	$-0.0018(10)$
C6	$0.0373(12)$	$0.0350(12)$	$0.0419(13)$	$0.0011(9)$	$-0.0067(10)$	$0.0059(10)$
N3	$0.0594(15)$	$0.0423(13)$	$0.0888(19)$	$0.0083(11)$	$-0.0059(13)$	$0.0216(12)$
C5	$0.0377(12)$	$0.0354(12)$	$0.0283(10)$	$0.0011(9)$	$-0.0031(9)$	$-0.0015(9)$
C1	$0.0416(13)$	$0.0500(15)$	$0.0410(13)$	$-0.0047(10)$	$-0.0076(10)$	$-0.0001(11)$
C4	$0.0469(13)$	$0.0386(13)$	$0.0399(12)$	$0.0074(10)$	$0.0011(10)$	$-0.0002(10)$
C3	$0.0451(14)$	$0.0535(15)$	$0.0401(13)$	$0.0184(12)$	$0.0009(10)$	$0.0017(11)$

Geometric parameters (\AA, ${ }^{\circ}$)
$\mathrm{Cu} 1-\mathrm{N} 2$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{~S} 1-\mathrm{C} 6$
$\mathrm{~N} 1-\mathrm{C} 1$
$\mathrm{~N} 1-\mathrm{C} 5$
$\mathrm{C} 2-\mathrm{C} 3$
$\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{C} 2-\mathrm{H} 2$
$\mathrm{~N} 2-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{~N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{~N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Cu} 1$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cu} 1$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{Cu} 1$
$\mathrm{~N} 2-\mathrm{C} 6-\mathrm{S} 1$
$\mathrm{C} 4-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$
$\mathrm{~N} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$
$\mathrm{~N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$
$\mathrm{~N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$

1.947 (2)	N2-C6	1.147 (3)
1.947 (2)	N3-C4	1.376 (3)
1.9728 (19)	N3-H3A	0.8600
1.9728 (19)	N3-H3B	0.8600
1.628 (3)	C5-C4	1.408 (3)
1.333 (3)	C5-C5 ${ }^{\text {i }}$	1.484 (4)
1.355 (3)	C1-H1	0.9300
1.359 (4)	C4-C3	1.402 (3)
1.384 (4)	C3-H3	0.9300
0.9300		
92.80 (13)	C4-N3-H3B	120.0
161.13 (9)	H3A-N3-H3B	120.0
95.61 (9)	N1-C5-C4	119.24 (19)
95.61 (9)	N1-C5-C5 ${ }^{\text {i }}$	113.13 (12)
161.13 (9)	C4-C5-C5 ${ }^{\text {i }}$	127.48 (14)
81.60 (11)	N1-C1-C2	121.1 (2)
121.3 (2)	N1-C1-H1	119.4
123.49 (17)	C2- $\mathrm{C} 1-\mathrm{H} 1$	119.4
114.82 (14)	N3-C4-C3	119.0 (2)
118.8 (2)	N3-C4-C5	123.5 (2)
120.6	C3-C4-C5	117.5 (2)
120.6	C2-C3-C4	120.8 (2)
165.4 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.6
179.3 (2)	C4-C3-H3	119.6
120.0		
-16.6 (2)	$\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5{ }^{\text {i }}$	13.7 (3)
99.5 (3)	C5-N1-C1-C2	-1.2 (3)
-177.8 (2)	$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	170.89 (18)

sup-4

supplementary materials

$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$155.98(16)$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$-88.0(3)$
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5$	$-5.21(11)$
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	$71.6(8)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	$-44.8(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	$-125.3(8)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$10.6(3)$
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$-162.18(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5{ }^{\mathrm{i}}$	$-173.6(2)$

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$-5.5(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$165.2(2)$
$\mathrm{C} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3$	$-10.0(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$-13.0(3)$
$\mathrm{C} 5-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$171.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$2.6(4)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-171.8(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$6.5(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~S}^{\mathrm{ii}}$	0.86	2.69	$3.550(2)$	174
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.86	2.23	$2.775(4)$	121
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{~N} 2$	0.93	2.58	$3.044(4)$	112

Symmetry codes: (ii) $-x+1 / 2,-y+1 / 2,-z+2$; (i) $-x, y,-z+3 / 2$.
supplementary materials

Fig. 1

Fig. 2

